數字集成電路設計-13-常用模塊集錦
來源:程序員人生 發布時間:2014-10-08 18:35:13 閱讀次數:3320次
引言
C語言,C++語言等軟件編程語言吸引我們的一個很重要的原因是他們都能提供非常豐富的函數庫供我們使用,大大提高coding的效率。
但是像verilogHDL等HDL語言這方面做的比較弱,尤其是可綜合的語法,基本沒有通用的模塊庫供我們使用,所以編碼效率會比較低。如果我們把平時經常使用的一些模塊積累起來,慢慢的標準化,這樣以后我們再設計新的電路時,就會方便很多,今天就是開始。
1,判斷兩個信號是否相等
function Fcompare;
input valid_a,valid_b;
input [31:0] a,b;
Fcompare = valid_a & valid_b & (({32{valid_a}} & a) == ({32{valid_b}} & b));
endfunction
2,對一個one-hot的值,得到是對應bit的十進制數
function [2:0] Fcode_8b;
input [7:0] one_hot;
Fcode_8b =( one_hot[0] ? 3'd0 :
one_hot[1] ? 3'd1 :
one_hot[2] ? 3'd2 :
one_hot[3] ? 3'd3 :
one_hot[4] ? 3'd4 :
one_hot[5] ? 3'd5 :
one_hot[6] ? 3'd6 :
one_hot[7] ? 3'd7 : 3'd0;
);
endfunction
3,上面函數的反向功能
function [7:0] Fdecode_8b;
input [2:0] value;
Fdecode_8b =( value==3'd7,value==3'd6,value==3'd5,value==3'd4,value==3'd3,value==3'd2,value==3'd1,value==3'd0 );
endfunction
4,clock gage
在實際的電路設計中,低功耗(low-power)是我們必須時刻都需要謹記在心的一條法則,這條法則的具體實現中最重要的就是clock gage了。
但是一般情況下DC會提供專門的gating cell,在做仿真時,我們還是需要一個簡單的模型。
module clk_gate
(
input enable,
input clk,
output clk_o
);
reg not_gate;
always @(enable or clk)
if(~clk)
not_gate = enable;
assign clk_o = clk & not_gate;
endmodule
5,獲得信號的上升沿
module sig_posedge
(
input clk,
input signal,
output signal_posedge
);
reg tmp_r;
always @(posedge clk)
tmp_r <= signal;
assign signal_posedge = signal & ~tmp_r;
endmodule
6,獲得信號的下降沿
module sig_negedge
(
input clk,
input signal,
output signal_negedge
);
reg tmp_r;
always @(posedge clk)
tmp_r <= signal;
assign signal_negedge = ~signal & tmp_r;
endmodule
7,round-robin arbiter(2選1)
function [1:0] Fround_robin_2;
input [1:0] req,req_en,grant_en;
input priority_in;
reg rq_a,rq_b,grant_a,grant_b,prio_a,prio_b;
begin
{rq_a,rq_b} = req;
{prio_b,prio_a} = {priority_in==1'b1,priority_in==1'b0};
grant_a = ( prio_a & rq_a |
prio_b & rq_a & ~rq_b);
grant_b = ( prio_b & rq_b |
prio_a & rq_b & ~rq_a);
Fround_robin_2 = {grant_b,grant_a} & req_en & grant_en;
end
endfunction
8,round-robin arbiter(4選1)
function [3:0] Fround_robin_4;
input [3:0] req,req_en,grant_en;
input [1:0] priority_in;
reg rq_a,rq_b,rq_c,rq_d;
reg grant_a,grant_b,grant_c,grant_d;
reg prio_a,prio_b,prio_c,prio_d;
begin
{rq_d,rq_c,rq_b,rq_a} = req;
{prio_d,prio_c,prio_b,prio_a} = {priority_in==2'b11,priority_in==2'b10,priority_in==2'b01,priority_in==2'b00};
grant_a = ( prio_a & rq_a |
prio_b & rq_a & ~rq_b & ~rq_c & ~rq_d |
prio_c & rq_a & ~rq_c & ~rq_d |
prio_d & rq_a & ~rq_d);
grant_b = ( prio_b & rq_b |
prio_c & rq_b & ~rq_c & ~rq_d & ~rq_a |
prio_d & rq_b & ~rq_d & ~rq_a |
prio_a & rq_b & ~rq_a);
grant_c = ( prio_c & rq_c |
prio_d & rq_c & ~rq_d & ~rq_a & ~rq_b |
prio_a & rq_c & ~rq_a & ~rq_b |
prio_b & rq_c & ~rq_b);
grant_d = ( prio_d & rq_d |
prio_a & rq_d & ~rq_a & ~rq_b & ~rq_c |
prio_b & rq_d & ~rq_b & ~rq_c |
prio_c & rq_d & ~rq_c);
Fround_robin_4 = {grant_d,grant_c,grant_b,grant_a} & req_en & grant_en;
end
endfunction
9,round-robin arbiter(8選1)
function [7:0] Fround_robin_8;
input [7:0] req,req_en,grant_en;
input [2:0] priority_in;
reg rq_a,rq_b,rq_c,rq_d,rq_e,rq_f,rq_g,rq_h;
reg grant_a,grant_b,grant_c,grant_d,grant_e,grant_f,grant_g,grant_h;
reg prio_a,prio_b,prio_c,prio_d,prio_e,prio_f,prio_g,prio_h;
begin
{rq_h,rq_g,rq_f,rq_e,rq_d,rq_c,rq_b,rq_a} = req;
{prio_h,prio_g,prio_f,prio_e,prio_d,prio_c,prio_b,prio_a} = {priority_in==3'b111,priority_in==3'b110,priority_in==3'b101,priority_in==3'b100,priority_in==3'b011,priority_in==3'b010,priority_in==3'b001,priority_in==3'b000};
grant_a = ( rq_a &
(prio_a
|prio_b & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h
|prio_c & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h
|prio_d & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h
|prio_e & ~rq_e & ~rq_f & ~rq_g & ~rq_h
|prio_f & ~rq_f & ~rq_g & ~rq_h
|prio_g & ~rq_g & ~rq_h
|prio_h & ~rq_h);
grant_b = ( rq_b &
(prio_b
|prio_c & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a
|prio_d & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a
|prio_e & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a
|prio_f & ~rq_f & ~rq_g & ~rq_h & ~rq_a
|prio_g & ~rq_g & ~rq_h & ~rq_a
|prio_h & ~rq_h & ~rq_a
|prio_a & ~rq_a);
grant_c = ( rq_c &
(prio_c
|prio_d & ~rq_d & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b
|prio_e & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b
|prio_f & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b
|prio_g & ~rq_g & ~rq_h & ~rq_a & ~rq_b
|prio_h & ~rq_h & ~rq_a & ~rq_b
|prio_a & ~rq_a & ~rq_b
|prio_b & ~rq_b);
grant_d = ( rq_d &
(prio_d
|prio_e & ~rq_e & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c
|prio_f & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c
|prio_g & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c
|prio_h & ~rq_h & ~rq_a & ~rq_b & ~rq_c
|prio_a & ~rq_a & ~rq_b & ~rq_c
|prio_b & ~rq_b & ~rq_c
|prio_c & ~rq_c);
grant_e = ( rq_e &
(prio_e
|prio_f & ~rq_f & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d
|prio_g & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d
|prio_h & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d
|prio_a & ~rq_a & ~rq_b & ~rq_c & ~rq_d
|prio_b & ~rq_b & ~rq_c & ~rq_d
|prio_c & ~rq_c & ~rq_d
|prio_d & ~rq_d);
grant_f = ( rq_f &
(prio_f
|prio_g & ~rq_g & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e
|prio_h & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e
|prio_a & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e
|prio_b & ~rq_b & ~rq_c & ~rq_d & ~rq_e
|prio_c & ~rq_c & ~rq_d & ~rq_e
|prio_d & ~rq_d & ~rq_e
|prio_e & ~rq_e);
grant_g = ( rq_g &
(prio_g
|prio_h & ~rq_h & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f
|prio_a & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f
|prio_b & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f
|prio_c & ~rq_c & ~rq_d & ~rq_e & ~rq_f
|prio_d & ~rq_d & ~rq_e & ~rq_f
|prio_e & ~rq_e & ~rq_f
|prio_f & ~rq_f);
grant_h = ( rq_h &
(prio_h
|prio_a & ~rq_a & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g
|prio_b & ~rq_b & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g
|prio_c & ~rq_c & ~rq_d & ~rq_e & ~rq_f & ~rq_g
|prio_d & ~rq_d & ~rq_e & ~rq_f & ~rq_g
|prio_e & ~rq_e & ~rq_f & ~rq_g
|prio_f & ~rq_f & ~rq_g
|prio_g & ~rq_g);
Fround_robin_8 = {grant_h,grant_g,grant_f,grant_e,grant_d,grant_c,grant_b,grant_a} & req_en & grant_en;
end
endfunction
10,簡易同步fifo
module simple_syn_fifo
#(
parameter WIDTH = 32,
parameter DEPTH = 4,
parameter PTR_WIDTH = 2
)
(
input clk,
input rst_n,
input ren,
input wen,
input [WIDTH-1:0] din,
output full,
output empty,
output valid,
output [WIDTH-1:0] dout
);
reg [WIDTH-1:0] mem_r[0:DEPTH-1];
reg [PTR_WIDTH-1:0] rptr_r;
reg [PTR_WIDTH-1:0] wptr_r;
reg [PTR_WIDTH:0] flag_r;
always @(posedge clk)
if(wen)
mem_r[wptr_r] <= din;
always @(posedge clk)
if(~rst_n)
wptr_r <= (PTR_WIDTH-1)'d0;
else if(wen)
wptr_r <= wptr_r + 1'b1;
always @(posedge clk)
if(~rst_n)
rptr_r <= (PTR_WIDTH-1)'d0;
else if(wen)
rptr_r <= rptr_r + 1'b1;
always @(posedge clk)
if(~rst_n)
flag_r <= PTR_WIDTH'd0;
else if(wen & ~ren)
flag_r <= flag_r + 1'b1;
else if(~wen & ren)
flag_r <= flag_r - 1'b1;
assign dout = mem_r[rptr_r];
assign full = (flag_r >= DEPTH);
assign empty = (flag_r == PTR_WIDTH'd0);
assign valid = ren;
endmodule
生活不易,碼農辛苦
如果您覺得本網站對您的學習有所幫助,可以手機掃描二維碼進行捐贈