日本搞逼视频_黄色一级片免费在线观看_色99久久_性明星video另类hd_欧美77_综合在线视频

國內最全IT社區平臺 聯系我們 | 收藏本站
阿里云優惠2
您當前位置:首頁 > php開源 > php教程 > Leetcode 169 Majority Element

Leetcode 169 Majority Element

來源:程序員人生   發布時間:2017-03-01 08:52:58 閱讀次數:2623次

Given an array of size n, find the majority element. The majority element is the element that appears more than ? n/2 ? times.

You may assume that the array is non-empty and the majority element always exist in the array.

Credits:
Special thanks to @ts for adding this problem and creating all test cases.

找出出現次數超過1半的數字。

做法太多,花式過,我用的hash,貼上了討論版中的幾種常見做法,bitmap很有新意

Well, if you have got this problem accepted, you may have noticed that there are 7 suggested solutions for this problem. The following passage will implement 6 of them except the O(n^2) brute force algorithm.


Hash Table

The hash-table solution is very straightforward. We maintain a mapping from each element to its number of appearances. While constructing the mapping, we update the majority element based on the max number of appearances we have seen. Notice that we do not need to construct the full mapping when we see that an element has appeared more than n / 2 times.

The code is as follows, which should be self-explanatory.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        unordered_map<int, int> counts; 
        int n = nums.size();
        for (int i = 0; i < n; i++)
            if (++counts[nums[i]] > n / 2)
                return nums[i];
    }
};

Sorting

Since the majority element appears more than n / 2 times, the n / 2-th element in the sorted nums must be the majority element. This can be proved intuitively. Note that the majority element will take more than n / 2 positions in the sorted nums (cover more than half of nums). If the first of it appears in the 0-th position, it will also appear in the n / 2-th position to cover more than half of nums. It is similar if the last of it appears in the n - 1-th position. These two cases are that the contiguous chunk of the majority element is to the leftmost and the rightmost in nums. For other cases (imagine the chunk moves between the left and the right end), it must also appear in the n / 2-th position.

The code is as follows, being very short if we use the system nth_element (thanks for @qeatzy for pointing out such a nice function).

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        nth_element(nums.begin(), nums.begin() + nums.size() / 2, nums.end());
        return nums[nums.size() / 2];
    } 
};

Randomization

This is a really nice idea and works pretty well (16ms running time on the OJ, almost fastest among the C++ solutions). The proof is already given in the suggested solutions.

The code is as follows, randomly pick an element and see if it is the majority one.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int n = nums.size();
        srand(unsigned(time(NULL)));
        while (true) {
            int idx = rand() % n;
            int candidate = nums[idx];
            int counts = 0; 
            for (int i = 0; i < n; i++)
                if (nums[i] == candidate)
                    counts++; 
            if (counts > n / 2) return candidate;
        }
    }
};

Divide and Conquer

This idea is very algorithmic. However, the implementation of it requires some careful thought about the base cases of the recursion. The base case is that when the array has only one element, then it is the majority one. This solution takes 24ms.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        return majority(nums, 0, nums.size() - 1);
    }
private:
    int majority(vector<int>& nums, int left, int right) {
        if (left == right) return nums[left];
        int mid = left + ((right - left) >> 1);
        int lm = majority(nums, left, mid);
        int rm = majority(nums, mid + 1, right);
        if (lm == rm) return lm;
        return count(nums.begin() + left, nums.begin() + right + 1, lm) > count(nums.begin() + left, nums.begin() + right + 1, rm) ? lm : rm;
    }
}; 

Moore Voting Algorithm

A brilliant and easy-to-implement algorithm! It also runs very fast, about 20ms.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int major, counts = 0, n = nums.size();
        for (int i = 0; i < n; i++) {
            if (!counts) {
                major = nums[i];
                counts = 1;
            }
            else counts += (nums[i] == major) ? 1 : ;
        }
        return major;
    }
};

Bit Manipulation

Another nice idea! The key lies in how to count the number of 1's on a specific bit. Specifically, you need a mask with a 1 on the i-the bit and 0 otherwise to get the i-th bit of each element in nums. The code is as follows.

class Solution {
public:
    int majorityElement(vector<int>& nums) {
        int major = 0, n = nums.size();
        for (int i = 0, mask = 1; i < 32; i++, mask <<= 1) {
            int bitCounts = 0;
            for (int j = 0; j < n; j++) {
                if (nums[j] & mask) bitCounts++;
                if (bitCounts > n / 2) {
                    major |= mask;
                    break;
                }
            }
        } 
        return major;
    } 
};

生活不易,碼農辛苦
如果您覺得本網站對您的學習有所幫助,可以手機掃描二維碼進行捐贈
程序員人生
------分隔線----------------------------
分享到:
------分隔線----------------------------
關閉
程序員人生
主站蜘蛛池模板: 中文字幕国产一区二区三区 | 欧美中文字幕一区二区三区亚洲 | 国产精品精品久久久久久 | 欧美日韩三区 | 欧美激情网址 | 7777久久香蕉成人影院 | 中文字幕亚洲激情 | 久久午夜网 | 麻豆视频在线免费观看 | 成人自拍视频 | 93精品国产乱码久久久 | 天天久久久 | 久久国产精品一区二区三区 | 亚洲三级不卡 | av网站免费观看 | av影视网| 在线播放日韩 | 爱综合| 国产综合视频 | 欧美综合视频 | 国产精品网站视频 | 青青视频一区二区 | 日韩欧美一 | 欧美亚洲一 | 91大神在线看 | 日韩精品一区二区三区四区 | 亚洲一区二区网站 | 国产色在线 | 成人免费视频网站 | 美女视频网站久久 | 黄色成人在线网站 | 91成人精品 | 成人在线观 | 九一在线免费观看 | 日本免费色 | 日韩国产一区 | 伊人9| 女人久久 | 在线观看日韩精品 | 天堂成人网 | av麻豆|