開1個機(jī)器學(xué)習(xí)方法科普系列,也做基礎(chǔ)回顧之用。學(xué)而時習(xí)之。
content:
linear regression, Ridge, Lasso
Logistic Regression, Softmax
Kmeans, GMM, EM, Spectral Clustering
Dimensionality Reduction: PCA、LDA、Laplacian Eigenmap、 LLE、 Isomap(修改前面的blog)
SVM
C3、C4.5
Apriori,F(xiàn)P
PageRank
minHash, LSH
Manifold Ranking,EMR
待補(bǔ)充
…
…
開始幾篇將詳細(xì)介紹1下線性回歸linear regression,和加上L1和L2的正則的變化。后面的文章將介紹邏輯回歸logistic regression,和Softmax regression。為何要先講這幾個方法呢?由于它們是機(jī)器學(xué)習(xí)/深度學(xué)習(xí)的基石(building block)之1,而且在大量教學(xué)視頻和教材中反復(fù)被提到,所以我也記錄1下自己的理解,方便以后翻閱。這3個方法都是有監(jiān)督的學(xué)習(xí)方法,線性回歸是回歸算法,而邏輯回歸和softmax本質(zhì)上是分類算法(從離散的分類目標(biāo)導(dǎo)出),不過有1些場合下也有混著用的――如果目標(biāo)輸出值的取值范圍和logistic的輸出取值范圍1致。
ok,空話不多說。
可以說基本上是機(jī)器學(xué)習(xí)中最簡單的模型了,但是實(shí)際上其地位很重要(計(jì)算簡單、效果不錯,在很多其他算法中也能夠看到用LR作為1部份)。
定義1下1些符號表達(dá),我們通常習(xí)慣用
線性回歸的模型是這樣的,對1個樣本
線性回歸的目標(biāo)是用預(yù)測結(jié)果盡量地?cái)M合目標(biāo)label,用最多見的Least square作為loss function:
接下來看1下我們尋覓到的預(yù)測值的1個幾何解釋:從上面的解析解
如果您覺得本網(wǎng)站對您的學(xué)習(xí)有所幫助,可以手機(jī)掃描二維碼進(jìn)行捐贈